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a b s t r a c t

Immune surveillance in the central nervous system (CNS) was considered impossible because: (i) the
brain parenchyma is separated from the blood circulation by the blood–brain barrier (BBB); (ii) the brain
lacks lymphatic drainage and (iii) the brain displays low major histocompatibility complex class II
(MHCII) expression. In this context, the BBB prevents entry of immune molecules and effector cells to
the CNS. The absence of lymphatic vessels avoids CNS antigens from reaching the lymph nodes for lym-
phocyte presentation and activation. Finally, the low MHCII expression hinders effective antigen presen-
tation and re-activation of T cells for a competent immune response. All these factors limit the
effectiveness of the afferent and efferent arms necessary to carry out immune surveillance. Nevertheless,
recent evidence supports that CNS is monitored by the immune system through a modified surveillance
circuit; this work reviews these findings.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The immune system protects the organism by constant moni-
toring by specialized cells. These cells freely circulate between
the lymphoid organs and other tissues searching for all kinds of
potentially damaging agents of internal or external origin through
a process known as immune surveillance (Wekerle, 1993). Immune
surveillance occurs in most of the tissues, with few immune priv-
ileged exceptions that include the testicles, the anterior chamber of
the eye and the central nervous system (CNS; Medawar, 1948;
Barker and Billingham, 1977; Wekerle, 1993).

The CNS has structural properties that influence the immune
reactivity. Among these features are the presence of the blood–
brain barrier (BBB), the absence of lymphatic drainage and the
reduced expression of Major Histocompatibility Complex Class II
molecules (MHCII). The presence of the BBB interferes with the
afferent arm of immune surveillance by preventing immune effec-
tor cells and molecules from entering the CNS, which in turn
prevents an interaction between T cells and CNS antigens (We-
kerle, 1993; Cserr and Knopf, 1990). The absence of lymphatic
drainage restricts the efferent arm of the immune surveillance by
preventing CNS antigens from reaching nearby lymphatic nodes

(LNs), thus restricting the activation of lymphocytes. Finally, the
low expression of the MHCII hinders antigen presentation and T
cells re-activation. From this perspective, the immune privilege
was regarded as a passive non-reactive state associated with the
isolation of the CNS from the immune system. Nevertheless, these
anatomical and structural elements are much more than passive
barriers. For example, the physiological drainage of the cerebrospi-
nal fluid (CSF) into the lymph and the blood circulation provides
alternative routes for interstitial liquid antigens draining (Cserr
and Knopf, 1990). Previous studies show that the BBB permits
the selective access of some T cells (Ben-Nun et al., 1981; Napars-
tek et al., 1983). Finally, although under normal conditions CNS
resident cells have a low or null expression of the MHCII, an
inflammatory stimulus is capable of inducing rapidly its expression
(Neumann, 2001; Carson et al., 2006).

For all these reasons, the concept of CNS immune privilege
should be reassessed and rethought, especially because in the past
the entry of immune elements into the CNS has been always asso-
ciated with damage or disease development (Ransohoff et al.,
2003; Bechmann, 2005).

2. CNS antigens draining routes

Adequate immune surveillance requires that both antigens and
antigen-presenting cells (APCs) can reach the secondary lymphoid
organs; this makes lymphatic drainage essential. In peripheral
organs, resident APCs capture local antigens and migrate via affer-
ent lymphatic vessels to the nearby LNs for antigen presentation
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(Oo et al., 2010; see Fig. 1). The CNS, however, lacks a traditional
lymphatic system; consequently CNS antigens draining must occur
through alternative routes.

One possible route is the physiological circulation and reabsorp-
tion of the CSF through the arachnoid villi towards the venous sinus,
allowing CNS soluble antigens to reach the spleen via blood circula-
tion (Harling-Berg et al., 1989; Cserr et al., 1992; Dickstein et al.,
1999; also see Fig. 2). Another probable route is the outflow of CSF
and interstitial liquid toward the head and neck’s lymphatic vessels
through the extensions of the subarachnoid space of the olfactory,
optic, trigeminal and acoustic nerves (Dickstein et al., 1999). This
route favors the arrival of CNS antigens to the deep and superficial

cervical LNs (Table 1), thereby potentially promoting a high-level
production of antibodies, which can be significantly abolished
through surgical obstruction of these cranial nerves (Harling-Berg
et al., 1989; Cserr et al., 1992; Gordon et al., 1992).

Local antigens also exit the CNS by APCs such as macrophages
or dendritic cells (DCs). These cells uptake and process local anti-
gens and leave the CNS following the same routes as CNS antigens
to reach the cervical LNs (Kuhlmann et al., 2001; de Vos et al.,
2002; Karman et al., 2004). Although under physiological
conditions these cells are absent from the cerebral parenchyma,
they are usually present in structures that produce or transport
CSF, such as ventricles, meninges and choroid plexuses (Matyszak

Fig. 1. Differences between systemic and CNS immune surveillance circuits. Antigen draining is normally executed by lymphatic vessels that communicate systemic organs
with regional lymph nodes (LNs). Central nervous system (CNS) can drain antigens by alternate routes such as the physiological cerebrospinal fluid (CSF) circulation into the
blood and via some cranial and spinal nerves roots into the lymph. Both surveillance circuits share antigen transport by antigen presenting cells (APC) or capture of lymph or
CSF solubilized antigen by LNs APCs for further lymphocyte presentation and activation. In order to exert their function lymphocytes need to leave the LNs, home to the
different organs and extravasate through a multistep process that involves adhesion molecules in both lymphocyte and endothelial cells. T and B cells must be activated to
pass the blood–brain barrier (BBB) in the CNS. Systemic organs and CNS require an additional antigenic presentation to close the immune surveillance circuit. DCs, Dendritic
cells; MI, Microglia; MQ, Macrophages.
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and Perry, 1996; McMenamin et al., 2003). In fact during neuro-
inflammatory conditions, DCs accumulate in the CSF, as well as
in perivascular spaces. These findings suggest that the CSF might
be a major route for transporting DCs from the CNS to the lym-
phoid organs (Hatterer et al., 2008). Additionally, it has been re-
ported that DCs injected into the CSF preferentially migrate to B
cell follicles within the cervical LNs; suggesting that under neu-
ro-inflammatory conditions, specific mechanisms direct the DCs
migration to this location (Hatterer et al., 2006).

Therefore CNS antigens probably access lymphoid tissues rap-
idly through the CSF or APC transport for subsequent processing
and appropriate presentation, in order to stimulate specific antigen
responses in immature and memory T cells (Ransohoff et al., 2003).

3. Peripheral stimulation in the lymphatic nodes

Lymphoid organs present a functional specialization for distinct
anatomical sites for carrying out immune responses with particular

characteristics against local antigens (Wolvers et al., 1999; Kraal
et al., 2006). For instance, ileal Peyer’s patches provide oral toler-
ance to many dietary antigens and commensal bacteria. In order
to induce tolerance, local DCs capture antigens, migrate to the mu-
cosa-draining LNs and generate antigen-specific suppressive T cells
(Fig. 1). The failure to induce tolerance leads to food allergy or celiac
disease (Kraal et al., 2006).

In contrast, the CNS does not normally possess any structurally-
defined lymphoid tissue. The peripheral immune response to CNS
antigens commonly occurs at the cervical LNs and is characterized
by a predominant antibody response, a Th2 type response (Har-
ling-Berg et al., 1989; de Vos et al., 2002; Mojtahedi, 2005). One
factor that may influence the immature T helper lymphocytes to
acquire a Th2 profile in the cervical LNs is the relatively high con-
centration of antigens in APCs. It could also be induced through the
secretion of CNS immune-regulating molecules draining toward
the cervical LNs, where these molecules could influence antigen
presentation by modulating APC activity (Mojtahedi, 2005). Finally,

Fig. 2. Modified immune surveillance circuit in the Central Nervous System. Proposed immune surveillance circuit through antigen (Ag) exit, either solubilized in the
cerebrospinal fluid or transported by antigen-presenting cells (APC) for its presentation to lymphocytes in the cervical lymph nodes (LNs) and/or the spleen, thus forming the
efferent arm of surveillance; and with the subsequent arrival of activated lymphocytes in the central nervous system (CNS) through the blood–brain barrier (BBB),
constituting the afferent arm.
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DCs preferential migration from CSF to B cell follicles in the cervi-
cal LNs could also contribute to an active antibody response
(Hatterer et al. 2006). These types of immune responses contribute
to less damage than Th1 immune responses, which are usually
associated with CNS inflammatory pathologies (Chavarria and
Alcocer-Varela, 2004).

4. Lymphocytes migration to CNS

Although it was believed that leukocytes were excluded from
the CNS by the BBB making immune surveillance impossible, it is
now known that BBB does not prevent CNS leukocyte trafficking.
Indeed, T, B and NK lymphocytes as well as cells of the macro-
phage/monocyte lineage have been detected in the CNS under nor-
mal conditions (Hickey, 1999), CNS perivascular macrophages are
continually replaced (Hickey and Kimura, 1988) and lymphocytes
can gain access to CSF either by traversing BBB to the perivascular
space or the choroid plexus (Seabrook et al., 1998; Kivisäkk et al.,
2003; Ransohoff et al., 2003).

In order to be capable of passing through the BBB lymphocytes
must be activated, independently of their antigenic specificity and
MHCII compatibility(Richert et al., 1979; Wekerle et al., 1986;
Hickey, 1999). Their retention and participation in CNS inflamma-
tion depend on the common patterns of antigen presentation and T
cell recognition (Hickey et al., 1991; Knopf et al., 1998; Hickey,
1999). Systemic memory and activated lymphocytes also reach
the CNS, thus contributing to the immune surveillance of the
CNS (Silva et al., 1999; Kwok et al., 2002; Kivisäkk et al., 2006).

BBB lymphocyte crossing occurs by similar mechanisms de-
scribed for endothelial transmigration in other tissues; it follows
a sequential process of cellular rolling, adhesion and diapedesis;
and is mediated and guided by adhesion molecules and chemo-
kines (Drevets and Leenen, 2000). Adhesion molecules are ex-
pressed in lymphocytes and endothelial cells (Table 2), and are
regulated by immune system and glia cell molecules. Astrocytes
and microglia also modulate BBB permeability, increasing or
decreasing lymphocyte recruitment (McCarron et al., 1993; Male
et al., 1994; Hickey, 1999, 2001). Additionally, adhesion molecules
participate in the differential recruitment of several types of lym-
phocytes and determine lymphocyte final CNS locations, such as
parenchyma, meninges or choroid plexus (Baron et al., 1993; Hick-
ey, 1999, 2001).

5. Antigen presentation in the CNS

In physiological conditions, CNS presents low expression of
MHCII molecules. Therefore, resident brain cells would be unable
to present specific antigens to T lymphocytes. The absence of pro-
fessional APCs in brain parenchyma could prevent the initiation
and propagation of immune responses (Neumann, 2001). Never-
theless, pre-activated T lymphocytes in the immune organs may
migrate to the brain parenchyma and release pro-inflammatory
cytokines (IFN-c, TNF-a) inducing MHCII molecules into almost
all CNS residing cells (Neumann, 2001; Carson et al., 2006). Also,
monocytes/macrophages are recruited and infiltrate the perivascu-
lar space as sentinels (Neumann, 2001). Consequently, infiltrated T
lymphocytes recognize the antigens presented by these APCs and
act as effector cells (Neumann, 2001; Prat et al., 2001).

6. CNS modified immune surveillance: multiple sclerosis as an
example

Traditionally immune surveillance involves well-coordinated
events between the focus of inflammation and the local lymphoid
organs(Fig. 1; Oo et al., 2010).

Despite its structural properties CNS can be monitored by a
modified immune surveillance circuit (Fig. 2). Multiple sclerosis
clearly shows that immune surveillance is possible in the CNS,
though with particular characteristics of its own.

Multiple sclerosis is an autoimmune disease characterized by
inflammation, demyelinization and axonal degeneration (Glass
et al., 2010). This disease presents characteristic pathological
changes such as: an important perivascular infiltration of lympho-
cytes and plasma cells in the white substance of brain and spinal
cord, loss of BBB integrity, astrocyte and microglia activation, and
demyelinization (Wekerle, 1993; Glass et al., 2010). Auto-reactive
T and B cells are fundamental for disease development. These cells
require antigenic presentation of myelin antigens by APCs such as
DCs, macrophages and microglia (Fig. 2) in order to activate and
differentiate into effector cells (Glass et al., 2010). Several studies
have demonstrated that DCs and macrophages can leave the CNS
transporting myelin antigens and reach the cervical LNs for antigen
presentation to auto-reactive T and B lymphocytes (Fig. 2; Kuhl-
mann et al., 2001; de Vos et al., 2002; Karman et al., 2004; Fabriek
et al., 2005). Also it is probable that CSF and serum soluble myelin
antigens could reach cervical LNs and the spleen to be captured
there by local APCs and presented to the respective specific lympho-
cytes (Massaro et al., 1985; Thompson et al., 1985; Lamers et al.,
1998). Once activated, the auto-reactive lymphocytes would be able

Table 1
Reported routes for CNS antigens draining.

Antigen CNS leaving
mechanism

CNS off-site
detection

References

MBP Macrophages Cervical lymph nodes Massaro et al. (1985), Thompson et al. (1985), Lamers et al. (1998), Liu et al. (2001),
de Vos et al. (2002), Ohta et al. (2002) and Fabriek et al. (2005)Dendritic cells Spleen

CSF Serum
PLP Macrophages Cervical lymph nodes de Vos et al. (2002), Ohta et al. (2002) and Fabriek et al. (2005)

Dendritic cells
HTLV-I CSF Serum Bhagavati et al. (1988), Moritoyo et al. (1999) and Cartier and Ramirez (2005)

Lymphocytes Peripheral blood monocytes
CSF cells

HIV CSF Lymph nodes Cashion et al. (1999) and Chiodi et al. (1988, 1992)
CSF cells Spleen

Peripheral blood cells
Serum

VZV CSF Serum Sotelo et al. (2008)
Taenia solium CSF Serum Garcia et al. (2000), Pardini et al. (2001) and Bobes et al. (2006)
Toxoplasma gondhi CSF Serum Requejo et al. (1997), and Chaves-Borges et al. (1999)

MBP, Myelin basic protein; HTLV-I, Human T-lymphotropic virus type I; HIV, Human immunodeficiency virus; VZV, Varicella zoster virus.
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to home to the CNS and enter the perivascular space of the BBB
(Fig. 2; Seabrook et al., 1998; Silva et al., 1999). Still these lympho-
cytes require an additional specific antigen signal to enable them to
migrate from the perivascular space to the cerebral parenchyma in
order to begin an inflammatory process in the CNS (Archambault
et al., 2005); therefore completing the CNS immune surveillance cir-
cuit (Fig. 2).

7. Conclusions

Active immune surveillance in the CNS is integrated by a modi-
fied immune circuit resulting in protection from possible brain
damage (Baron et al., 1993). This implies a dynamic communication
between the CNS and the secondary lymphoid organs. Based on the
CNS physiology, three characteristics emerge that are immunologi-
cally relevant to the circulation of CNS antigens and their drainage.
First, the movement of interstitial fluid and CSF through the sub-
arachnoid space allows antigen access to immune cell sentinels
and to lymphatic vessels via cranial and spinal nerves. Second, the
drainage of interstitial fluids and CSF makes it possible for antigens
to reach at a relatively high concentration a large number of cervical
LN APCs. Subsequently, activated lymphocytes migrate to the CNS
through the BBB. Third, CNS antigens quickly reach the subarach-
noid space to be drained; however, some residual antigens are re-
tained at various sites within the cerebral tissue. This retention
presents an opportunity for small but immunologically significant
quantities of antigens to interact with recirculating antigen-specific
lymphocytes that have been previously activated in the cervical LNs
(Harling-Berg et al., 1989).
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