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Abstract

The diversity in repertoires of antibodies (Abs) needed in response to the antigen challenge is produced by evolutionary and somatic
processes. The mechanisms operating at a somatic level have been studied in great detail. In contrast, neither the mechanisms nor the
strategies of diversification at an evolutionary level have yet been understood in similar detail. Particularly, the substitution patterns in alleles
of immunoglobulin genes (Igs) have not been systematically studied. Furthermore, there is a scarcity of studies which link the analysis at a
g ation. For
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enetic level of the diversification of repertoires with the structural consequences at the protein level of the changes in DNA inform
he purpose of systematically characterizing the strategies of evolutionary diversification through sequence variation at alleles, in
e built a database for all the alleles of the IGHV locus in humans reported until now. Based on these data, we performed divers
f substitution patterns and linked these results with studies at the protein level. We found that the sequence diversification in diffe
oes not operate with equal intensity for all V genes. Our studies, both of the number of substitutions and of the type of amino a
er sub-segment of the V-REGION evidenced differences in the selective pressure to which these regions are exposed. The im

hese results for understanding the evolutionary diversification strategies, as well as for the somatic generation of antibody rep
iscussed.
2004 Elsevier Ltd. All rights reserved.
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. Introduction

The main function of the immune system in vertebrates
s to protect them from foreign organisms (Mazumdar, 1995;
ohn and Langman, 1996). Since the variety of the antigenic
orld is enormous, efficient immunological mechanisms of
efense must be provided with repertoires of highly diver-
ified receptors able to contribute efficiently to the recogni-
ion and processing of foreign agents. Diversity in the reper-
oire of antibodies (Abs) is produced by genetic and somatic
rocesses (Max, 1998). Generally, organisms have extensive

Abbreviations: Ab, antibody; CDR, complementarity determining re-
ion; FR, framework region; Ig, immunoglobulin; R/S ratio, replace-
ent/silent ratio
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multigenetic families with diverse members which enc
numerous V-REGIONs. Such diversity increases by som
mechanisms like recombination, inexact binding of gen
segments, hypermutation (Tonegawa, 1983) and germline
conversion (Becker and Knight, 1990; McCormack et
1991).

The mechanisms operating to diversify the Abs reper
at somatic level have been studied in great detail, but lit
known about the genetic contribution to the diversificatio
the Ab repertoire. This lack of understanding is partly du
the very complex configuration, composition and evolu
of the immunoglobulin (Ig) genes (Li et al., 2002). However
it is fundamental to understand the factors that have sh
the germline repertoire and its evolutionary diversifica
processes. This knowledge should lead to an understa
of the differential expression of V genes and their associa
with some pathologies (Milner et al., 1995).

161-5890/$ – see front matter © 2004 Elsevier Ltd. All rights reserved.
oi:10.1016/j.molimm.2004.11.004
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In the human Ig loci, two types of polymorphism have
been observed for the V genes: (i) variation in nucleotide
substitution and (ii) insertion and/or deletion of genes in
the locus (Cook and Tomlinson, 1995; Lefranc et al., 1999;
Hammarstrom et al., 1990; Matsuda et al., 1993, 1998).
Although a correlation between insertion/deletion polymor-
phism variations and pathologies has not been found (Pargent
et al., 1991; Schaible et al., 1993), such events may affect the
function that genetic segments play in the Repertoire (Li et al.,
2002). In regions I and II of gene IGHV, this kind of poly-
morphism has been observed (Cui and Li, 1998; Pramanik
and Li, 2002), whereas in region III this type of variations
has not been found (Cui and Li, 1997, 2000).

Similar processes take place in evolution through nu-
cleotide substitution where the genes situated in the most JH-
distal regions present a high degree of substitution polymor-
phism (genes 1-12L, 1-6/1-69, 1-3/l-68, 1-12R and 4-11/DP-
66), in contrast to genes located in the most JH-proximal por-
tion that are highly conserved (Cook et al., 1994a, 1994b).
Differences in substitution polymorphism depend not only on
the physical location of the IGHV genes; it has been observed
that within the V-REGIONs, there also exist fragments in
which diversification is either favored or restricted (Cook and
Tomlinson, 1995; Milner et al., 1995). Within the mutations
observed in germline genes, processes of diversification and
selection have been seen to stimulate the variability of amino
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Lara-Ochoa et al., 1995), but even within each region there
are very diverse patterns of variation among distinct positions
(Vargas-Madrazo et al., 1994). For instance, hypervariable
positions that have a high frequency of contact with the anti-
gen are present in the CDRs (Padlan et al., 1995; MacCallum
et al., 1996; Ramirez-Benites and Almagro, 2001), whereas
other highly conserved positions preserve the structure of the
antigen-binding site (Chothia and Lesk, 1987; Padlan, 1990;
Vargas-Madrazo et al., 1994). Therefore, an integral and de-
tailed characterization of the substitution patterns in alleles
in the V genes of Igs that considers its functional peculiari-
ties, will allow a deeper comprehension of the strategies of
molecular evolution in the repertoire of antibodies (Vargas-
Madrazo et al., 1997).

In this paper we analyzed some aspects of molecular
evolution by allelic variation in the human IGHV genes
and the consequences of these alterations on the structural
properties of the antigen-binding site. This will permit a
more detailed understanding of the strategies that the im-
mune system develops to create diverse repertoires of Abs
with high affinity and specificity. Allele mutations of the hu-
man functional IGHV genes were analyzed, based on the
alignments of alleles available in IMGT Repertoire from
IMGT, the international ImMunoGenetics information sys-
tem,http://imgt.cines.fr(Lefranc, 2003, 2004), and published
in The Immunoglobulin FactsBook (Lefranc and Lefranc,
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cids at the antigen-binding site and to conserve the a
cids in the framework regions (FRs). This highly mar
onservation of the FR is related to its function of maint
ng the folding of the domain, and consequently conserv
eneral structure of the antigen-binding site (Tanaka and Ne
989; Kirkham and Schroeder, 1994; Vargas-Madrazo e
994; Tomlinson et al., 1996). Furthermore, variability in th
H domain is not only favored in the CDRs, as some FRs
ore susceptible to processes of diversification while o
re highly conserved (Kirkham et al., 1992). Differences in
onservation may be attributed to the distinct functions
ormed by these sub-segments in the antibody (Kirkham et
l., 1992; Kirkham and Schroeder, 1994).

Within the V-REGIONs, the substitution of nucleotid
ermits the creation of alleles with amino acid changes w

mply structural variants with respect to its parent allele. T
rocess permits the exploration of variants of antigen-bin
ites, allowing a better adaptation to the changing antig
niverse in an evolutionary period (Ota et al., 2000).

At present a detailed characterization of the implicat
f the substitution patterns in alleles for the mechanis
ntigen-antibody recognition does not exist. There are
ral levels at which the evolutionary strategies of the Ig g
an be characterized (Sasso et al., 1990; van Dijk et al., 19
asso et al., 1993; Cui and Li, 1998). For example, the evo

utionary diversification of Ig genes can be studied by
umber of mutations per allele (Li, 1997), as well as by th
istribution and type of substitutions along the gene (Eigen
t al., 1989). There is a marked difference in evolutionary p

erns between FRs and CDRs in the antibodies (Kabat, 1978
001). Through a detailed study of the original reports
he sequences, we evaluated the quality of the availab
ormation. Based on this database, the following aspec
nalyzed: (i) distribution of alleles per gene; (ii) numbe
ubstitutions per allele; (iii) distribution and type of am
cid substitution in the V-REGION; (iv) analysis of the
lacement/silent substitutions ratio (R/S ratio) for the c
lete V-REGION and by sub-regions (FRs and CDRs).

The analysis of the R/S ratio with the model of gen
hange through aleatory punctual mutation provides a
rful tool for determining the type of selective pressure th
perating on positions or specific sub-regions of genes (Jukes
nd King, 1979; Shlomchik et al., 1987). This characteristi

s very appropriate for the objectives of the present stud

. Methods

.1. Construction of the database

Based on the IMGT (http://imgt.cines.fr) database, all a
eles of the human IGHV locus were compiled and comp
n detail with the germline genes. We aligned each of th
eles with the allele representing each IGHV gene and
owing the criterion of maximum homology, we assigned
equences to the corresponding allele. An analysis of th
uences made it possible to reassign some of the allele
resented errors in their assignment in the original data
ue to problems of alignment. In order to have qualita
lements for this study, each of the original articles wa

http://imgt.cines.fr/
http://imgt.cines.fr/


T. Romo-Gonz´alez, E. Vargas-Madrazo / Molecular Immunology 42 (2005) 1085–1097 1087

viewed to obtain the information relevant to each sequence.
The original sequences were checked; the experimental con-
ditions, the source of the DNA, and other data were collected
in order to evaluate the quality of the database.

2.2. Classification of the type of replacement

For each of the substitutions reported in the alleles, the type
of amino acid substitution (alterations of physico-chemical
properties) presented in each residue was analyzed; this was
done in accordance with the system of the grouping and anal-
ysis byGrantham (1974)andGo and Miyazawa (1980). In
these systems, the alteration of physico-chemical properties
is mainly determined by the composition, polarity, molecu-
lar volume, exteriority and interiority of the lateral chains.
Considering all these characteristics, we classified the amino
acid substitutions into three groups: (i) conservative, (ii) non-
conservative and (iii) radical.

2.3. Calculating the R/S ratio

Due to redundancy in the genetic code, base pairs changes
in a codon may yield either a replacement of one amino
acid by another or preservation of the same residue (a silent
mutation). Because of this, it is possible to characterize the
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remaining studies report sequences of alleles, this was
not the purpose of their research. For instance, the alleles
found for genes V7-4-1, V5-51, V5-a and V3-23 resulted
from systematic studies to characterize their polymor-
phism (Sanz et al., 1989; Willems van Dijk et al., 1992;
Rubinstein et al., 1994; Sasso et al., 1995).

(ii) The polymorphism found for genes V3-11, V3-15, V3-
30, V3-30-3, V3-33, V3-49, V3-64, V4-4, V4-30-2, V4-
30-4, V4-31, V4-34, V4-39, V4-59, and V4-61 was re-
ported in studies whose objective was to characterize
the polymorphism of their respective families, but not
specifically that of these genes (Sasso et al., 1990, 1992;
Olee et al., 1991; Weng et al., 1992; Winkler et al., 1992;
Adderson et al., 1993).

(iii) The alleles found for the remaining genes (21) may
be considered circumstantial, since they were found in
studies of other kinds, such as the mapping of the IGHV
locus, or gene usage and its association with pathologies.

(iv) Genes V1-18, V3-7, V3-13, and V3-30-3 have been
studied independently by different research groups that
always found the same allele for each gene (Berman
et al., 1988; Olee et al., 1991; Kuppers et al., 1992;
Tomlinson et al., 1992; Winkler et al., 1992; Matsuda
et al., 1993; Sasso et al., 1992, 1995).

(v) For gene V3-30, 18 different alleles have been reported,
and they resulted from four independent studies (Chen,
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volutionary forces shaping the diversification of the dif
nt sub-regions of a gene by studying the replacemen
ilent substitutions ratio (R/S ratio). The R/S ratio was
ulated by dividing the replacement substitutions by the
umber of silent substitutions (R/S) (Jukes and King, 197
hlomchik et al., 1987). The substitutions are counted as
leotide changes found in an allele with respect to the
ominant allele in a gene. Codons undergoing random m

ion are predicted to yield an R/S ratio of 2.9. Values be
.9 indicate conservation and those above 2.9 diversific
Jukes and King, 1979; Shlomchik et al., 1987).

. Results

.1. Analysis of the database for human IGHV alleles

Table 1 reports the genes for which alleles have b
ound. This database includes 158 sequences, which
ribute alleles for 42 of the 51 functional genes that form
GHV locus (Cook and Tomlinson, 1995). It is remarkable
hat most of the studies reporting alleles were not realize
he purpose of characterizing allelic polymorphism. It sho
lso be mentioned that most of the samples of genetic

erial for studies of IGHV genes have been obtained f
aucasian individuals.
The main features that we found from the detailed ana

f the sequence database are:

(i) Only part of the data comes from studies specific
designed to characterize polymorphism. Although
1990; Olee et al., 1991; Sasso et al., 1992; Harmer e
1995); for gene V3-23, in contrast, only two alleles ha
been found also as a result of four independent stu
(Chen et al., 1988; Tomlinson et al., 1992; Matsud
al., 1993; Sasso et al., 1995).

vi) In the case of the genes with more reported alleles (2
4-34, 4-59 and 3-30), the different alleles resulted f
independent studies (Kodaira et al., 1986; Lee et a
1987; Baer et al., 1988; Chen, 1990; Olee et al., 1
Pascual et al., 1990; Campbell et al., 1992; Sasso
1992; Tomlinson et al., 1992; van Es et al., 1992; W
et al., 1992; Andris et al., 1993; Matsuda et al., 19
van der Maarel et al., 1993; Cook et al., 1994a, 19
Brezinschek et al., 1995; Harmer et al., 19
Voswinkel et al., 1997).

The fifth and sixth columns ofTable 1show the numbe
f alleles reported for each gene. A great variability in
umber of alleles per gene exists, for example, gene
resents 18 alleles, whereas gene 3-13 has only one
ange implies great differences in the degree of variab
or the genes, which allows us to classify the genes vari
ty as follows: (i) highly variable (seven or more alleles
ene); (ii) variable (from three to six alleles) and (iii) co
erved (one to two alleles). Of the 42 functional genes o
GHV gene for which alleles have been reported 7 (1
re highly variable, 12 (28%) are variable and 23 (55%
onserved.

At a family level, marked differences are also obser
n the number of reported alleles (Table 2, columns thre
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Table 1
Number of alleles reported per gene for human IGHV

Clans and families Number of germline genes Number of allelic segments Gene name Number of alleles

Clan I IGHV1 11 7 1-2 3
1-3 1
1-18 1
1-45 2
1-46 2
1-69 6
1-f 1

IGHV5 2 2 5-5-51 4
5-a 3

IGHV7 1 1 7-4-1 2

Clan II IGHV2 3 2 2-5 8
2-70 11

IGHV4 11 10 4-4 5
4-28 4
4-30-2 3
4-30-4 5
4-31 9
4-34 12
4-39 5
4-59 9
4-61 5
4-b 1

IGHV6 1 1 6-1 1

Clan III IGHV3 22 19 3-7 1
3-11 2
3-13 1
3-15 7
3-21 1
3-23 2
3-30 18
3-30-3 1
3-33 4
3-38 1
3-43 1
3-47 2
3-48 2
3-49 2
3-53 1
3-64 4
3-66 2
3-72 1
3-74 2

Totals 51 42 158

and four). Evidently, this amount is strongly determined by
the number of genes in each family. Within the complex
families, it is noteworthy that, although the IGHV4 fam-
ily contains fewer genes than IGHV3 (11 and 22, respec-
tively), the first proved to be more variable in the number
of alleles reported (58 and 55 genes, respectively). In the
small families, IGHV2 and IGHV5 are highly variable, for
they possess only three and two genes, respectively, yet 19
and 7 alleles have been reported, respectively. This con-
trasts with the IGHV6 and IGHV7 families, each consist-

ing of only one gene, for which only one allele has been
found.

3.2. Number of substitutions per allele

Fig. 1 shows the number of substitutions (total and re-
placements) per allele. The distribution is highly hetero-
geneous, with extreme values ranging from 1 to 12 re-
placement substitutions. We propose a classification of three
groups of alleles according to the number of replacement
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Table 2
R/S ratio by sub-segments of the VH domain grouped according to family and clan

Clans and families Number of genes Number of alleles FR1 CDR1 FR2 CDR2 FR3
Clan I IGHV1 11(7)a 16 0.1 2/0b 1/0 11.0 2.6

IGHV5 2(2) 7 0/3c 1/0 0.5 – 2/0
IGHV7 1(1) 2 – – 0/1 – 4/0

Clan II IGHV2 3(2) 19 4.0 9/0 1.0 20/0 2.4
IGHV4 11(10) 58 3.0 5/0 1.3 3.4 0.7
IGHV6 1(1) 1 – – – – –

Clan III IGHV3 22(19) 55 1.7 12.5 0.2 3.0 2.0

Totals 51(42) 158 1.8 21.0 0.6 4.3 1.5
a The number of genes integrating each family is specified. The number of genes presenting alleles is reported in parentheses.
b No silent substitutions were found for some regions and families, while for others no replacements substitutions were found. In such cases, the number of

replacements and silent substitutions is explicitly reported (numerator and denominator, respectively).
c Those positions for which no substitution of any kind was encountered are indicated with a hyphen.

substitutions: (i) highly mutated (seven or more substitu-
tions); (ii) moderately mutated (from three to six substi-
tutions); (iii) slightly mutated (one or two substitutions).
Of the 158 alleles studied, 107 (68%) are slightly mu-
tated; 38 (24%) moderately mutated and 13 (8%) highly
mutated.

An important question at this point is whether some corre-
lation exists between the presence of a great number of alleles
in a gene and the fact that these alleles are highly substituted.
It was found that there is a strong correlation between these
two events. Thus, of the 13 highly mutated alleles, eight be-
long to highly variable genes, which represents a frequency
far greater than expected (estimatedX2 is 46.6 and the ex-

pectedX2
0.95 is 3.84); that is, out of a total of 158 alleles, 74

alleles belong to highly variable genes, which implies a prob-
ability of 0.46 for the occurrence of alleles in highly variable
genes. Therefore, if there are 13 highly mutated alleles, the
mathematical expectation that these alleles should appear in
highly variable genes is 5.98, which is less than the eight
observed.

3.3. Type of substitutions per allele

Not only the number of substitutions is important to
create diversity at the protein level; the type of amino
acid substitution (alteration of physico-chemical properties)

F
a

ig. 1. This figure shows the number of substitutions occurring in each allele
replacement at the amino acid level are shown in green.
. The total of substitutions is shown in white, while those changes that produced
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presented in each residue also plays a fundamental role (see
Section2).

In the 158 reported alleles, 484 substitutions were found,
of which 300 implied amino acid changes. Of these 300,
183 (61%) imply a conservative change, 107 (36%) non-
conservative, and 10 (3%) radical. Almost two thirds of amino
acid substitutions (61%) do not imply drastic alterations in
physico-chemical properties, which seems to be partly asso-
ciated with the preponderance of conservative substitutions
in the FRs (see section on analysis of R/S ratio). Neverthe-
less, the fact that 39% of the changes (non-conservative and
radical) imply partial or radical alterations in the properties of
the residues suggests intense pressure toward diversification,
at least in some sub-regions of the domain.

The types of amino acid replacement were estimated by
grouping the genes according to their degree of variability
(number of alleles per gene). The very variable genes present
the following proportions: 62% of conservative substitutions,
35% non-conservative and 3% radical. For the variable genes,
the percentages are: 65%, 31% and 4%, respectively, and
for the conserved genes, the percentages are: 60%, 38% and
2%. This indicates that the proportions of the three types
of amino acid replacements remain the same, whether the
gene is highly variable or very conserved. Very similar pro-
portions were found when grouping the alleles according to
the number of substitutions they present. Thus, the highly

mutated alleles have the following percentages per type of
substitution: 72% with conservative substitutions, 23% non-
conservative and five radical. The percentages for the mod-
erately mutated alleles are: 60%, 37% and 3%, respectively,
and for the slightly mutated alleles: 60%, 36% and 4%. These
results suggest that the pressure to conserve the appropriate
proportion of residues operates similarly on the different al-
leles, although, as we mentioned before, the intensity of the
variation is different among the distinct genes. In the follow-
ing sections, we will see that the types of amino acid substi-
tutions are not equally distributed among the CDRs and the
FRs.

3.4. Substitutions by position in the V-REGION

The previous results show that, through a detailed char-
acterization of the substitution patterns at alleles, peculiar
forms of variations associated with the specific functions of
the protein under study become evident. A distinctive char-
acteristic of antibodies is the great diversity of variability
at different positions dependent on the function performed
by the residues (Kabat, 1978; Vargas-Madrazo et al., 1994).
Therefore, the number of substitutions per position in the V-
REGION was analyzed for the 158 alleles, and the results are
shown inFig. 2. Both the total number of substitutions and
those that imply amino acid replacement are reported.

F
i

ig. 2. This figure denotes the substitutions occurring in the VH exon by pos
n red, and white is for all the substitutions accounted for.
itions from 1 to 94. Those substitutions originating from replacement are shown
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Fig. 3. Within the VH domain of the Ig, the positions produced by allelic
polymorphism that were replaced most frequently are marked with blue;
within these same positions those that were reported as frequently in contact
with the Ag are marked with red (35). Pink represents CDR1 and green
CDR2.

It can be seen that some positions (12 out of a total of
94) admit neither silent nor replacement substitutions, in any
of the alleles (positions 11, 20, 21, 36, 39, 43, 46, 47, 52b,
76, 78, 82). Taking into account only the replacement substi-
tutions, we find another group of positions, 37 of them, that
mutate occasionally, that is, present one or two replacements.
In contrast with this group, 27 positions presented three or
more replacement substitutions; among these, 15 residues
stand out for their high frequency of replacement (eight or
more substitutions for positions 16, 33, 41, 50, 52, 53, 54, 58,
66, 69, 73, 82a, 89, 91 and 94). Within this group, positions
33 and 50 deserve special attention for their extraordinary hy-
pervariability, having 29 and 32 replacements, respectively. It
should be noted that this group of positions with an elevated
number of replacements includes various residues that have
been identified as having frequent contact with the antigen
(positions 33, 50, 52, 53, 54, 58) (MacCallum et al., 1996).
In Fig. 3the location of the positions identified herein as be-
ing frequently replaced is presented in the three-dimensional
structure of the VH domain, with emphasis on those positions
showing frequent contact with the antigen. It can be seen that
most of the frequently replaced positions (10 out of 15) are
located in the CDRs or in nearby areas (Figs. 2 and 3).

The presence of a region in the FR3 with a high replace-
ment frequency (positions 89, 91, 94) is also noteworthy; it
corresponds with the interior region (Int) of the FR3, accord-
i

ons,
w ed
d don

(Fig. 4). The expected probability of a double or triple mu-
tation occurring within a codon is extremely small (0.0036
for a double mutation and 0.000013 for a triple one, if we as-
sume an average length of 282 nucleotides per V-REGION).
We also found that these double and triple mutations occur
repeatedly in the same position in different alleles (Fig. 4),
and that the great majority of such multiple mutations per
codon take place in highly mutated positions. The previous
observations suggest that these events of multiple mutations
are associated with mutation hotspots.

3.5. R/S ratios per region in the V-REGION

It is possible to characterize the evolutionary forces shap-
ing the diversification of the different sub-regions of a gene by
studying the replacement and silent substitutions ratio (R/S
ratio) and comparing them with the values obtained through
a strict consideration of the redundance of the genetic code
(Jukes and King, 1979; Shlomchik et al., 1987).

The R/S ratio for the different sub-regions (FR1, FR2,
FR3, CDR1, CDR2) of the V-REGION in IGHV genes was
calculated, and the results per family and region are summa-
rized inTable 2. The analysis of the total R/S ratio per region
(last row inTable 2) shows that the R/S ratio values for the FRs
are far below the point of equilibrium (R/S = 2.9), whereas
the values for the CDRs are above said value. This same ten-
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During our analysis to determine mutations by positi

e found that some positions of the V-REGION show
ouble and triple mutations within one and the same co
ency has been reported for the variation between germ
enes in humans and mice, where the R/S ratio for the C
as above the point of equilibrium (Kirkham and Schroede
994; Ota et al., 2000). This shows that in allelic variatio

here is also a selection for diversification in the CDRs
or conservation in the FRs, similar to that shown for ort
gous and paralogous diversification for IGHV genes.

s notable for its R/S ratio value of 0.6, which implies t
lmost all of the substitutions occurring in this region
ilent. Although both CDRs favor replacement substituti
he R/S ratio value is much higher for CDR1 (21.0) than
DR2 (4.3). The reason for such a high value for CDR

hat nearly all of the substitutions in this region take p
n position 33, and all of those occurring in this position
eplacements (Fig. 2). Even though CDR2 contains positi
0, the most mutated position, several other positions in
egion present substitutions, many of which are silent. C
equently, the R/S ratio for CDR2 shows a value closer t
oint of equilibrium (4.3), though it also indicates a selec

oward diversification.
Upon itemizing the values by gene family, it can be s

hat both in the FRs and in the CDRs the R/S ratio va
ary considerably among regions for the different fam
Table 2). It should be noted that the small families, IGH
nd IGHV7, for which only one or two alleles have be
eported, contribute a very small sample for this type of a
sis. There is a great variation among the different fam
or FR1 and FR3; in FR1, for example, the R/S ratio va
or IGHV2 is 0.1, whereas for IGHV2 and IGHV4 the valu
re 4.0 and 3.0, respectively. Similarly, in FR3 a high con
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Fig. 4. This figure shows the replacement substitutions occurring within a single codon in the VH exon by positions from 1 to 94. They are grouped by color
according to the type of substitutions: yellow for triple substitutions, purple for double, and blue for single ones.

vation is seen for the IGHV4 family (R/S = 0.7); in contrast,
families IGHV5 and IGHV7 present only replacement sub-
stitutions (2.0/0 and 4.0/0, respectively).

The CDRs also present considerable variations in the R/S
ratio values. In CDR1, families IGHV1 and IGHV5, for
which 16 and 7 alleles, respectively, have been reported, show
only two and one respective replacement substitutions. In
contrast, families IGHV2, IGHV3 and IGHV4 in this same
CDR show high ratios of replacement. Considerable differ-
ences are also observed in CDR2, in which there are families
with very high R/S ratio values (IGHV1 and IGHV2), while
others have values quite close to the point of mutational equi-
librium (Table 2).

The simultaneous occurrence of opposing R/S ratio val-
ues between CDR1 and CDR2 in the same family presents an
even more striking contrast; in family IGHV3, for example,
the R/S ratio for CDR1 is 12.5, whereas the value for CDR2
is 3.0. Another noteworthy case is IGHV1, which as previ-
ously mentioned, has only two substitutions in CDR1 (both
replacements); whereas 12 substitutions occur in CDR2, 11
of them replacements, due to which a R/S ratio value of 11.0
is obtained (Table 2).

Considering the marked differences observed in the R/S
ratio among the different regions, the types of amino acid

substitutions among these segments may also be expected to
be significantly different. Therefore, the distribution of the
three types of amino acid substitution previously described
for the different CDR and FR regions was also calculated, the
results per region being as shown inTable 3.

FR1 and FR2 show a clear tendency to restrict their substi-
tutions toward the conservation of physico-chemical proper-
ties. Nonetheless, 17% of radical changes occurring in FR2
deserve attention. This value is contributed almost entirely
by two replacements in positions 41 and 42 of alleles V1-
45-03 and V5-51-05, respectively. Since FR2 forms part of
the core of the VH:VL interphase and is therefore funda-
mental for maintaining the stability of the variable superdo-
main (Vargas-Madrazo and Paz-Garcia, 2003), these alleles

Table 3
Percentage of replacement type for sub-regions of the Exon-V

Region Radical (%) Non-conservative (%) Conservative (%)

FR1 6 12 82
FR2 17 8 75
FR3 2 40 58
CDR1 0 38 63
CDR2 2 51 46
Exon-V 3 36 61
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may not be functional. On the other hand, FR3 presents four
times as many non-conservative substitutions as do FR1 and
FR2.

Although the percentage of radical changes in the CDRs
is also quite low, the value of their non-conservative sub-
stitutions rises considerably, the latter percentage being
greater than that for conservative changes in the case of
CDR2.

In general, the types of amino acid substitutions are not
observed to occur in the same proportions in the different
regions. This is congruent with observations in previous sec-
tions indicating the existence of diverse evolutionary restric-
tions for the different sub-segments.

4. Discussion

In the previous sections we analyzed the substitution pat-
terns at alleles in the IGHV locus. The evolutionary strategy
followed by the processes of diversification and/or conserva-
tion acting upon IGHV genes seems to be subject to mech-
anisms of selection and DNA dynamics, since the greatest
incidence of substitutions tends to occur in those regions and
residues that are important for the recognition of antigens,
while it is restricted in the regions responsible for the gen-
eral folding of the domain (Milner et al., 1995; Tomlinson
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that are distant from the antigen-binding site have been pos-
tulated as playing an important recognition role, since they
affect the antigen binding (Jones et al., 1986; Riechmann et
al., 1988; Gorman et al., 1991) or the interaction with other
non-specific ligands (Kirkham et al., 1992; Zouali, 1995) For
instance, position 71 in FR3 participates in the conformation
of CDR2 (Chothia et al., 1989; Foote and Winter, 1992) or af-
fects VH:VL pairing (Saul and Poljak, 1993; Vargas-Madrazo
and Paz-Garcia, 2003).

On the other hand, we found that the forces and mecha-
nisms to diversify the CDRs do not operate equally for the
different families. That is, in some families CDR1 is more
diversified and in others it is CDR2. The different CDRs may
perform distinct functions in the recognition properties of
antibodies (Rothenfluh and Steele, 1993; Vargas-Madrazo et
al., 1995, 1997; Hande and Manser, 1997; Hemminki et al.,
1998; Yazici et al., 1998; Decanniere et al., 1999; Roe et al.,
1999; Xu and Davis, 2000). Consequently, differential strate-
gies can operate for the CDRs in germinal diversification in
accordance with the distinct functions fulfilled by each gene
or family (Pascual et al., 1990; Berman et al., 1991; Wang
and Stollar, 1999; Van Dijk-Hard and Lundkvist, 2002). Un-
fortunately, at the present time analyses similar to the ones
described above for germline genes or somatic hypermutation
are not available.
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