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Abstract

The diversity in repertoires of antibodies (Abs) needed in response to the antigen challenge is produced by evolutionary and somatic
processes. The mechanisms operating at a somatic level have been studied in great detail. In contrast, neither the mechanisms nor the
strategies of diversification at an evolutionary level have yet been understood in similar detail. Particularly, the substitution pattesss in allel
of immunoglobulin genes (Igs) have not been systematically studied. Furthermore, there is a scarcity of studies which link the analysis at a
genetic level of the diversification of repertoires with the structural consequences at the protein level of the changes in DNA information. For
the purpose of systematically characterizing the strategies of evolutionary diversification through sequence variation at alleles, in this work,
we built a database for all the alleles of the IGHV locus in humans reported until now. Based on these data, we performed diverse analyses
of substitution patterns and linked these results with studies at the protein level. We found that the sequence diversification in different alleles
does not operate with equal intensity for all V genes. Our studies, both of the number of substitutions and of the type of amino acid change
per sub-segment of the V-REGION evidenced differences in the selective pressure to which these regions are exposed. The implications of
these results for understanding the evolutionary diversification strategies, as well as for the somatic generation of antibody repertoires are
discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction multigenetic families with diverse members which encode
numerous V-REGIONS. Such diversity increases by somatic
The main function of the immune system in vertebrates mechanisms like recombination, inexact binding of genetic
is to protect them from foreign organismidddzumdar, 1995;  segments, hypermutatiomfgnegawa, 1983and germline
Cohn and Langman, 19%65ince the variety of the antigenic  conversion Becker and Knight, 1990; McCormack et al.,
world is enormous, efficient immunological mechanisms of 1991).
defense must be provided with repertoires of highly diver-  The mechanisms operating to diversify the Abs repertoire
sified receptors able to contribute efficiently to the recogni- at somatic level have been studied in great detail, but little is
tion and processing of foreign agents. Diversity in the reper- known about the genetic contribution to the diversification of
toire of antibodies (Abs) is produced by genetic and somatic the Ab repertoire. This lack of understanding is partly due to
processesMax, 199§. Generally, organisms have extensive the very complex configuration, composition and evolution
of the immunoglobulin (1g) gene&iet al., 2003. However,
_— it is fundamental to understand the factors that have shaped
_ Abbreviations: Ab, antibody; CDR, complementarity determining re-  tha germline repertoire and its evolutionary diversification
gion; FR, framework region; Ig, immunoglobulin; R/S ratio, replace- . -
mentsilent ratio processes. This knowledge should lead to an understanding
* Corresponding author. Tel.: +52 28 125757, fax: +52 28 125757. of the differential expression of V genes and their association
E-mail addressenvargas@yahoo.com (E. Vargas-Madrazo). with some pathologiedMilner et al., 1995.
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In the human Ig loci, two types of polymorphism have Lara-Ochoa et al., 1995but even within each region there
been observed for the V genes: (i) variation in nucleotide are very diverse patterns of variation among distinct positions
substitution and (ii) insertion and/or deletion of genes in (Vargas-Madrazo et al., 19R4For instance, hypervariable
the locus Cook and Tomlinson, 1995; Lefranc et al., 1999; positions that have a high frequency of contact with the anti-
Hammarstrom et al., 1990; Matsuda et al., 1993, 1998 gen are present in the CDR2gdlan et al., 1995; MacCallum
Although a correlation between insertion/deletion polymor- et al., 1996; Ramirez-Benites and Almagro, 20)@thereas
phism variations and pathologies has not been foBadyent other highly conserved positions preserve the structure of the
etal., 1991; Schaible et al., 1993uch events may affectthe antigen-binding siteGhothia and Lesk, 1987; Padlan, 1990;
function that genetic segments play in the Repertadiretl., Vargas-Madrazo et al., 1994Therefore, an integral and de-
2002. In regions | and Il of gene IGHYV, this kind of poly- tailed characterization of the substitution patterns in alleles
morphism has been observeduj and Li, 1998; Pramanik  in the V genes of Igs that considers its functional peculiari-
and Li, 2002, whereas in region Il this type of variations ties, will allow a deeper comprehension of the strategies of
has not been foundJui and Li, 1997, 2000 molecular evolution in the repertoire of antibodidgigas-

Similar processes take place in evolution through nu- Madrazo et al., 1997
cleotide substitution where the genes situated in the mest J In this paper we analyzed some aspects of molecular
distal regions present a high degree of substitution polymor- evolution by allelic variation in the human IGHV genes
phism (genes 1-12L, 1-6/1-69, 1-3/I-68, 1-12R and 4-11/DP- and the consequences of these alterations on the structural
66), in contrast to genes located in the m@spdoximal por- properties of the antigen-binding site. This will permit a
tion that are highly conserved ok et al., 1994a, 1994b more detailed understanding of the strategies that the im-
Differences in substitution polymorphism depend not only on mune system develops to create diverse repertoires of Abs
the physical location of the IGHV genes; it has been observedwith high affinity and specificity. Allele mutations of the hu-
that within the V-REGIONSs, there also exist fragments in man functional IGHV genes were analyzed, based on the
which diversification is either favored or restrict€tbok and alignments of alleles available in IMGT Repertoire from
Tomlinson, 1995; Milner et al., 1995Within the mutations IMGT, the international ImnMunoGenetics information sys-
observed in germline genes, processes of diversification andtem,http://imgt.cines.f(Lefranc, 2003, 2004and published
selection have been seen to stimulate the variability of aminoin The Immunoglobulin FactsBool_éfranc and Lefranc,
acids at the antigen-binding site and to conserve the amino2001). Through a detailed study of the original reports on
acids in the framework regions (FRs). This highly marked the sequences, we evaluated the quality of the available in-
conservation of the FR is related to its function of maintain- formation. Based on this database, the following aspects are
ing the folding of the domain, and consequently conserve the analyzed: (i) distribution of alleles per gene; (ii) number of
general structure of the antigen-binding sifarfaka and Nei,  substitutions per allele; (iii) distribution and type of amino
1989; Kirkham and Schroeder, 1994; Vargas-Madrazo et al., acid substitution in the V-REGION; (iv) analysis of the re-
1994; Tomlinson et al., 1996Furthermore, variability inthe  placement/silent substitutions ratio (R/S ratio) for the com-
VH domain is not only favored in the CDRs, as some FRs are plete V-REGION and by sub-regions (FRs and CDRSs).
more susceptible to processes of diversification while others  The analysis of the R/S ratio with the model of genetic
are highly conservedirkham et al., 1992 Differences in change through aleatory punctual mutation provides a pow-
conservation may be attributed to the distinct functions per- erful tool for determining the type of selective pressure thatis
formed by these sub-segments in the antibd€iykham et operating on positions or specific sub-regions of gediglsds
al., 1992; Kirkham and Schroeder, 1994 and King, 1979; Shlomchik et al., 198his characteristic

Within the V-REGIONS, the substitution of nucleotides is very appropriate for the objectives of the present study.
permits the creation of alleles with amino acid changes which
imply structural variants with respect to its parent allele. This
process permits the exploration of variants of antigen-binding 2. Methods
sites, allowing a better adaptation to the changing antigenic
universe in an evolutionary perio®fa et al., 200D 2.1. Construction of the database

At present a detailed characterization of the implications
of the substitution patterns in alleles for the mechanism of  Based on the IMGTHttp://imgt.cines.fy database, all al-
antigen-antibody recognition does not exist. There are sev-leles of the human IGHV locus were compiled and compared
eral levels at which the evolutionary strategies of the Ig genesin detail with the germline genes. We aligned each of the al-
can be characterize®@ésso et al., 1990; van Dijk etal., 1991; leles with the allele representing each IGHV gene and, fol-
Sasso et al., 1993; Cui and Li, 199&or example, the evo-  lowing the criterion of maximum homology, we assigned the
lutionary diversification of Ig genes can be studied by the sequences to the corresponding allele. An analysis of the se-
number of mutations per allel&i( 1997), as well as by the  quences made it possible to reassign some of the alleles that
distribution and type of substitutions along the geBigén presented errors in their assignment in the original database
etal., 1989. There is amarked difference in evolutionary pat- due to problems of alignment. In order to have qualitative
terns between FRs and CDRs in the antibodiebat, 1978; elements for this study, each of the original articles was re-
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viewed to obtain the information relevant to each sequence.

The original sequences were checked; the experimental con-
ditions, the source of the DNA, and other data were collected

in order to evaluate the quality of the database.

2.2. Classification of the type of replacement
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remaining studies report sequences of alleles, this was
not the purpose of their research. For instance, the alleles
found forgenes V7-4-1,V5-51, V5-aand V3-23 resulted
from systematic studies to characterize their polymor-
phism Sanz et al., 1989; Willems van Dijk et al., 1992;
Rubinstein et al., 1994; Sasso et al., 1995

(i) The polymorphism found for genes V3-11, V3-15, V3-

For each of the substitutions reported in the alleles, the type
of amino acid substitution (alterations of physico-chemical
properties) presented in each residue was analyzed; this was
done in accordance with the system of the grouping and anal-
ysis by Grantham (1974and Go and Miyazawa (1980)n
these systems, the alteration of physico-chemical properties
is mainly determined by the composition, polarity, molecu-
lar volume, exteriority and interiority of the lateral chains.
Considering all these characteristics, we classified the amino
acid substitutions into three groups: (i) conservative, (ii) non-
conservative and (iii) radical.

(iv)
2.3. Calculating the R/S ratio

Due to redundancy in the genetic code, base pairs changes
in a codon may vyield either a replacement of one amino
acid by another or preservation of the same residue (a silent
mutation). Because of this, it is possible to characterize the (v
evolutionary forces shaping the diversification of the differ-
ent sub-regions of a gene by studying the replacement and
silent substitutions ratio (R/S ratio). The R/S ratio was cal-
culated by dividing the replacement substitutions by the total
number of silent substitutions (R/S)ukes and King, 1979;
Shlomchik et al., 1987 The substitutions are counted as nu- .
cleotide changes found in an allele with respect to the pre- (vi
dominant allele in a gene. Codons undergoing random muta-
tion are predicted to yield an R/S ratio of 2.9. Values below
2.9 indicate conservation and those above 2.9 diversification
(Jukes and King, 1979; Shlomchik et al., 1987

3. Results
3.1. Analysis of the database for human IGHV alleles

Table 1lreports the genes for which alleles have been
found. This database includes 158 sequences, which con
tribute alleles for 42 of the 51 functional genes that form the
IGHV locus (Cook and Tomlinson, 1995It is remarkable
that most of the studies reporting alleles were not realized for
the purpose of characterizing allelic polymorphism. It shoul
also be mentioned that most of the samples of genetic ma-
terial for studies of IGHV genes have been obtained fro
Caucasian individuals.

The main features that we found from the detailed analysis
of the sequence database are:

(i) Only part of the data comes from studies specifically

30, V3-30-3, V3-33,V3-49, V3-64, V4-4,V4-30-2, V4-
30-4, V4-31, V4-34, V4-39, V4-59, and V4-61 was re-
ported in studies whose objective was to characterize
the polymorphism of their respective families, but not
specifically that of these genedgsso et al., 1990, 1992;
Oleeetal., 1991; Weng etal., 1992; Winkler etal., 1992;
Adderson et al., 1993

(i) The alleles found for the remaining genes (21) may

be considered circumstantial, since they were found in
studies of other kinds, such as the mapping of the IGHV
locus, or gene usage and its association with pathologies.
Genes V1-18, V3-7, V3-13, and V3-30-3 have been
studied independently by different research groups that
always found the same allele for each geBer(nan

et al., 1988; Olee et al., 199Kuppers et al., 1992;
Tomlinson et al., 1992; Winkler et al., 1992; Matsuda
etal., 1993; Sasso et al., 1992, 1995

) For gene V3-30, 18 different alleles have been reported,

and they resulted from four independent stud@sen,
1990; Olee et al., 1991, Sasso etal., 1992; Harmer et al.,
1995; for gene V3-23, in contrast, only two alleles have
been found also as a result of four independent studies
(Chen et al., 1988; Tomlinson et al., 1992; Matsuda et
al., 1993; Sasso et al., 1995

) Inthe case of the genes with more reported alleles (2-70,

4-34, 4-59 and 3-30), the different alleles resulted from
independent studieK¢daira et al., 1986; Lee et al.,
1987; Baer et al., 1988; Chen, 1990; Olee et al., 1991;
Pascual et al., 1990; Campbell et al., 1992; Sasso et al.,
1992; Tomlinson et al., 1992; van Es et al., 1992; Weng
et al., 1992; Andris et al., 1993; Matsuda et al., 1993;
van der Maarel et al., 1993; Cook et al., 1994a, 1994b;
Brezinschek et al.,, 1995; Harmer et al.,, 1995;
Voswinkel et al., 199¥.

The fifth and sixth columns ofable 1show the number
of alleles reported for each gene. A great variability in the
number of alleles per gene exists, for example, gene 3-30
presents 18 alleles, whereas gene 3-13 has only one. This
range implies great differences in the degree of variability
d for the genes, which allows us to classify the genes variabil-
ity as follows: (i) highly variable (seven or more alleles per
m gene); (ii) variable (from three to six alleles) and (iii) con-
served (one to two alleles). Of the 42 functional genes of the
IGHV gene for which alleles have been reported 7 (17%)
are highly variable, 12 (28%) are variable and 23 (55%) are
conserved.

At a family level, marked differences are also observed

designed to characterize polymorphism. Although the in the number of reported allele§gble 2 columns three
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Number of alleles reported per gene for human IGHV

Clans and families

Number of germline genes

Number of allelic segments

Gene hame

Number of alleles

Clan | IGHV1

IGHV5

IGHV7

Clan Il IGHV2

IGHV4

IGHV6

Clan 1l IGHV3

Totals

11 7

11 10

22 19

51 42

1-2
1-3
1-18
1-45
1-46
1-69
1-f

5-5-51
5-a

N W PoNdNERE R

7-4-1

2-5
2-70

4-4
4-28
4-30-2
4-30-4
4-31
4-34
4-39
4-59
4-61
4-b

6-1

=
= o

=
R P OOONOUwR g

3-7
3-11
3-13
3-15
3-21
3-23
3-30
3-30-3
3-33
3-38
3-43
3-47
3-48
3-49
3-53
3-64
3-66
3-72
3-74

[N

NRPNRARNNMNNRPRPAMRONRNRNRQ

158

and four). Evidently, this amount is strongly determined by ing of only one gene, for which only one allele has been

the number of genes in each family. Within the complex found.

families, it is noteworthy that, although the IGHV4 fam-
ily contains fewer genes than IGHV3 (11 and 22, respec- 3.2. Number of substitutions per allele
tively), the first proved to be more variable in the number

of alleles reported (58 and 55 genes, respectively). In the

small families, IGHV2 and IGHV5 are highly variable, for
they possess only three and two genes, respectively, yet 19yeneous, with extreme values ranging from 1 to 12 re-
and 7 alleles have been reported, respectively. This con-placement substitutions. We propose a classification of three
trasts with the IGHV6 and IGHV7 families, each consist- groups of alleles according to the number of replacement

Fig. 1 shows the number of substitutions (total and re-
placements) per allele. The distribution is highly hetero-
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Table 2

R/S ratio by sub-segments of the VH domain grouped according to family and clan

Clans and families Number of genes Number of alleles FR1 CDR1 FR2 CDR2 FR3

Clan | IGHV1 11(7} 16 0.1 2/® 1/0 11.0 2.6
IGHV5 2(2) 7 0/3 1/0 0.5 - 2/0
IGHV7 1(1) 2 - - 01 - 410

Clan Il IGHV2 3(2) 19 4.0 9/0 1.0 20/0 2.4
IGHV4 11(10) 58 3.0 5/0 1.3 34 0.7
IGHV6 1(1) 1 - - - - -

Clan 11l IGHV3 22(19) 55 1.7 12.5 0.2 3.0 2.0

Totals 51(42) 158 1.8 21.0 0.6 4.3 15

2 The number of genes integrating each family is specified. The number of genes presenting alleles is reported in parentheses.

b No silent substitutions were found for some regions and families, while for others no replacements substitutions were found. In such caseshe numbe
replacements and silent substitutions is explicitly reported (numerator and denominator, respectively).

¢ Those positions for which no substitution of any kind was encountered are indicated with a hyphen.

substitutions: (i) highly mutated (seven or more substitu- pectedx?3 . is 3.84); that is, out of a total of 158 alleles, 74
tions); (i) moderately mutated (from three to six substi- alleles belong to highly variable genes, which implies a prob-
tutions); (iii) slightly mutated (one or two substitutions). ahility of 0.46 for the occurrence of alleles in highly variable
Of the 158 alleles studied, 107 (68%) are slightly mu- genes. Therefore, if there are 13 highly mutated alleles, the
tated; 38 (24%) moderately mutated and 13 (8%) highly mathematical expectation that these alleles should appear in

mutated. highly variable genes is 5.98, which is less than the eight
An important question at this point is whether some corre- gpserved.

lation exists between the presence of a great number of alleles

in a gene and the fact that these alleles are highly substituted3.3. Type of substitutions per allele

It was found that there is a strong correlation between these

two events. Thus, of the 13 highly mutated alleles, eight be-  Not only the number of substitutions is important to

long to highly variable genes, which represents a frequency create diversity at the protein level; the type of amino
far greater than expected (estimatédis 46.6 and the ex-  acid substitution (alteration of physico-chemical properties)

16

14

] va-50-10

12

V4-5p09

-y
o

V3-64-01 Iy4-34-11

Variability
[e+]

3-64-05

o

VH2-5-02 ~ ==
VH4-28-03 —£=
VH4-61-04 — =2

| I | 117 | | | [l
NN MW o o N M oW o m AN NN N o) o o o o n @ o NN
S835388828358882-58558833383385382838338¢878
(Fw@ﬂ) N OO0 ~ W WLMO OO OMWOWOWOMST T < N St O DD -
E B AR RES S BBEYBEN N 3553338888805 3
S rrre ST IrIrErrrrEryrrrrs iy sririrr T ISR
> > > >>5>>2>3>5>3>>2>>>2>>>>> T T>2>>2>2>22>>>2> I>>
> > >
Alleles

Fig. 1. This figure shows the number of substitutions occurring in each allele. The total of substitutions is shown in white, while those chargks#that pr
a replacement at the amino acid level are shown in green.
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presented in each residue also plays a fundamental role (seenutated alleles have the following percentages per type of
Section2). substitution: 72% with conservative substitutions, 23% non-

In the 158 reported alleles, 484 substitutions were found, conservative and five radical. The percentages for the mod-
of which 300 implied amino acid changes. Of these 300, erately mutated alleles are: 60%, 37% and 3%, respectively,
183 (61%) imply a conservative change, 107 (36%) non- and for the slightly mutated alleles: 60%, 36% and 4%. These
conservative, and 10 (3%) radical. Almosttwo thirds of amino results suggest that the pressure to conserve the appropriate
acid substitutions (61%) do not imply drastic alterations in proportion of residues operates similarly on the different al-
physico-chemical properties, which seems to be partly asso-leles, although, as we mentioned before, the intensity of the
ciated with the preponderance of conservative substitutionsvariation is different among the distinct genes. In the follow-
in the FRs (see section on analysis of R/S ratio). Neverthe-ing sections, we will see that the types of amino acid substi-
less, the fact that 39% of the changes (non-conservative andutions are not equally distributed among the CDRs and the
radical) imply partial or radical alterations in the properties of FRs.
the residues suggests intense pressure toward diversification,
at least in some sub-regions of the domain. 3.4. Substitutions by position in the V-REGION

The types of amino acid replacement were estimated by
grouping the genes according to their degree of variability ~ The previous results show that, through a detailed char-
(number of alleles per gene). The very variable genes presentcterization of the substitution patterns at alleles, peculiar
the following proportions: 62% of conservative substitutions, forms of variations associated with the specific functions of
35% non-conservative and 3% radical. For the variable genesthe protein under study become evident. A distinctive char-
the percentages are: 65%, 31% and 4%, respectively, andacteristic of antibodies is the great diversity of variability
for the conserved genes, the percentages are: 60%, 38% andt different positions dependent on the function performed
2%. This indicates that the proportions of the three types by the residuesabat, 1978; Vargas-Madrazo et al., 1994
of amino acid replacements remain the same, whether theTherefore, the number of substitutions per position in the V-
gene is highly variable or very conserved. Very similar pro- REGION was analyzed for the 158 alleles, and the results are
portions were found when grouping the alleles according to shown inFig. 2 Both the total number of substitutions and
the number of substitutions they present. Thus, the highly those that imply amino acid replacement are reported.

35 55

33

30
25
£ 2
=
& 53
B
@ 89
S 58 _
15 41 | I
2 | _
- T E 94
91
16 82a
I ‘
AR il 1 |
I [
1 ] [l I
[IMN] N I 1 |
8 i ] I I i
f““???@ﬁﬁﬁ&%%%F?%%ﬁ%%%%%%EERSﬁ%%%%Q
FR1 CDR1 FR2 CDR2 FR3 Ext FR3 Int

Amino acid Position

Fig. 2. This figure denotes the substitutions occurring in the VH exon by positions from 1 to 94. Those substitutions originating from replacdroent are s
in red, and white is for all the substitutions accounted for.
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(Fig. 4). The expected probability of a double or triple mu-
tation occurring within a codon is extremely small (0.0036
for a double mutation and 0.000013 for a triple one, if we as-
sume an average length of 282 nucleotides per V-REGION).
We also found that these double and triple mutations occur
repeatedly in the same position in different allelEgy( 4),

and that the great majority of such multiple mutations per
codon take place in highly mutated positions. The previous
observations suggest that these events of multiple mutations
are associated with mutation hotspots.

3.5. R/S ratios per region in the V-REGION

Itis possible to characterize the evolutionary forces shap-
ing the diversification of the different sub-regions of a gene by
studying the replacement and silent substitutions ratio (R/S
ratio) and comparing them with the values obtained through
a strict consideration of the redundance of the genetic code
(Jukes and King, 1979; Shlomchik et al., 1987

The R/S ratio for the different sub-regions (FR1, FR2,
FR3, CDR1, CDR2) of the V-REGION in IGHV genes was
Fig. 3. Within the VH domain of the Ig, the positions produced by allelic ~calculated, and the results per family and region are summa-
polymorphism that were replaced most frequently are marked with blue; rized inTable 2 The analysis of the total R/S ratio per region
W?thin these same positions_, those that were reported as frequently in contact(|ast rowinTable 3 shows thatthe R/S ratio values for the FRs
\é;v:t)r:qtzhe Ag are marked with red (35). Pink represents CDR1 and green are far below the point of equilibrium (R/S=2.9), whereas

the values for the CDRs are above said value. This same ten-

It can be seen that some positions (12 out of a total of dency has been reported for the variation between germline
94) admit neither silent nor replacement substitutions, in any genes in humans and mice, where the R/S ratio for the CDRs
of the alleles (positions 11, 20, 21, 36, 39, 43, 46, 47, 52h, was above the point of equilibriunk{rkham and Schroeder,
76, 78, 82). Taking into account only the replacement substi- 1994; Ota et al., 2000 This shows that in allelic variation
tutions, we find another group of positions, 37 of them, that there is also a selection for diversification in the CDRs and
mutate occasionally, that is, present one or two replacementsfor conservation in the FRs, similar to that shown for orthol-
In contrast with this group, 27 positions presented three or ogous and paralogous diversification for IGHV genes. FR2
more replacement substitutions; among these, 15 residuess notable for its R/S ratio value of 0.6, which implies that
stand out for their high frequency of replacement (eight or almost all of the substitutions occurring in this region are
more substitutions for positions 16, 33, 41, 50, 52, 53, 54, 58, silent. Although both CDRs favor replacement substitutions,
66, 69, 73, 82a, 89, 91 and 94). Within this group, positions the R/S ratio value is much higher for CDR1 (21.0) than for
33 and 50 deserve special attention for their extraordinary hy- CDR2 (4.3). The reason for such a high value for CDR1 is
pervariability, having 29 and 32 replacements, respectively. It that nearly all of the substitutions in this region take place
should be noted that this group of positions with an elevated in position 33, and all of those occurring in this position are
number of replacements includes various residues that havaeplacementsHig. 2). Even though CDR2 contains position
been identified as having frequent contact with the antigen 50, the most mutated position, several other positions in this
(positions 33, 50, 52, 53, 54, 58ylacCallum et al., 1996 region present substitutions, many of which are silent. Con-
In Fig. 3the location of the positions identified herein as be- sequently, the R/S ratio for CDR2 shows a value closer to the
ing frequently replaced is presented in the three-dimensionalpoint of equilibrium (4.3), though it also indicates a selection
structure of the VH domain, with emphasis on those positions toward diversification.
showing frequent contact with the antigen. It can be seenthat  Upon itemizing the values by gene family, it can be seen
most of the frequently replaced positions (10 out of 15) are that both in the FRs and in the CDRs the R/S ratio values
located in the CDRs or in nearby are&#gs. 2 and R vary considerably among regions for the different families

The presence of a region in the FR3 with a high replace- (Table 2. It should be noted that the small families, IGHV6
ment frequency (positions 89, 91, 94) is also noteworthy; it and IGHV7, for which only one or two alleles have been
corresponds with the interior region (Int) of the FR3, accord- reported, contribute a very small sample for this type of anal-
ing to a classification biKirkham and Schroeder (1994) ysis. There is a great variation among the different families

During our analysis to determine mutations by positions, for FR1 and FR3; in FR1, for example, the R/S ratio value
we found that some positions of the V-REGION showed for IGHV2is 0.1, whereas for IGHV2 and IGHV4 the values
double and triple mutations within one and the same codon are 4.0 and 3.0, respectively. Similarly, in FR3 a high conser-
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Fig. 4. This figure shows the replacement substitutions occurring within a single codon in the VH exon by positions from 1 to 94. They are grouped by color
according to the type of substitutions: yellow for triple substitutions, purple for double, and blue for single ones.

vation is seen for the IGHV4 family (R/S=0.7); in contrast, substitutions among these segments may also be expected to

families IGHV5 and IGHV7 present only replacement sub- be significantly different. Therefore, the distribution of the

stitutions (2.0/0 and 4.0/0, respectively). three types of amino acid substitution previously described
The CDRs also present considerable variations in the R/Sfor the different CDR and FR regions was also calculated, the

ratio values. In CDR1, families IGHV1 and IGHV5, for results per region being as shownTiable 3

which 16 and 7 alleles, respectively, have been reported, show FR1and FR2 show a clear tendency to restrict their substi-

only two and one respective replacement substitutions. In tutions toward the conservation of physico-chemical proper-

contrast, families IGHV2, IGHV3 and IGHV4 in this same ties. Nonetheless, 17% of radical changes occurring in FR2

CDR show high ratios of replacement. Considerable differ- deserve attention. This value is contributed almost entirely

ences are also observed in CDRZ2, in which there are familiesby two replacements in positions 41 and 42 of alleles V1-

with very high R/S ratio values (IGHV1 and IGHV2), while  45-03 and V5-51-05, respectively. Since FR2 forms part of

others have values quite close to the point of mutational equi- the core of the VH:VL interphase and is therefore funda-

librium (Table 2. mental for maintaining the stability of the variable superdo-
The simultaneous occurrence of opposing R/S ratio val- main (Vargas-Madrazo and Paz-Garcia, 2))GBese alleles

ues between CDR1 and CDR2 in the same family presents an

even more striking contrast; in family IGHV3, for example, Table 3

the R/S ratio for CDR1 is 12.5, whereas the value for CDR2 Percentage of replacement type for sub-regions of the Exon-V

is 3.0. Another noteworthy case is IGHV1, which as previ— Region Radical (%) Non-conservative (%) Conservative (%)

ously mentioned, has only two substitutions in CDR1 (both g 6 12 82
replacements); whereas 12 substitutions occur in CDR2, 11rRr2 17 8 75
of them replacements, due to which a R/S ratio value of 11.0 FR3 2 40 58
is obtained Table 2. CDR1 0 38 63
P : : CDR2 2 51 46

Considering the marked differences observed in the R/S
Exon-V 3 36 61

ratio among the different regions, the types of amino acid
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may not be functional. On the other hand, FR3 presents fourservation of those small families with unique characteristics
times as many non-conservative substitutions as do FR1 ande.g., family IGHV6) Pascual and Capra, 1991; Ota et al.,
FR2. 2000.
Although the percentage of radical changes in the CDRs  Nevertheless, more detailed studies (like the one presented
is also quite low, the value of their non-conservative sub- here) show the existence of much finer strategies. For exam-
stitutions rises considerably, the latter percentage beingple, for small families it is observed that families IGHV5,
greater than that for conservative changes in the case ofbut especially IGHV2, are highly redundant for the differ-
CDR2. ent analyses made here, whereas IGHV6 and IGHV7 are
In general, the types of amino acid substitutions are not highly conserved. Correspondingly, certain genes in large
observed to occur in the same proportions in the different families are highly variable in the number of alleles reported
regions. This is congruent with observations in previous sec- and in other parameters analyzed, while others are conserved
tions indicating the existence of diverse evolutionary restric- (Table ). For instance, we found that the evolutionary di-
tions for the different sub-segments. versification strategies differ greatly between genes V3-23
and V4-34, both of which are expressed very frequently in
humans lilner et al., 199%. Gene V3-23 has only three al-

4. Discussion leles, and its amino acid substitutions are restricted to CDR2.
In contrast, V4-34 has 12 alleles and its substitutions occur

In the previous sections we analyzed the substitution pat- all along the V-REGION (data not shown).
terns at alleles in the IGHV locus. The evolutionary strategy  In the human genome the alleles of a gene generally differ
followed by the processes of diversification and/or conserva- by an average of one nucleotide, this level of diversity being
tion acting upon IGHV genes seems to be subject to mech-associated with evolution through genetic drifirgglyak,
anisms of selection and DNA dynamics, since the greatest1997; Halushka et al., 1999In locus IGHV, 73% of the
incidence of substitutions tends to occur in those regions andalleles have one or two substitutions, which also suggests
residues that are important for the recognition of antigens, genetic drift; however, the remaining 27% (particularly the
while it is restricted in the regions responsible for the gen- 8% of genes having more than eight substitutions) show evi-
eral folding of the domainNilner et al., 1995; Tomlinson  dence of intense selective pressure to diversify the repertoire
et al., 1996; Ota et al., 20D0At the same time, it must  of antibodies.
be considered that in concertation with selective pressure In previous studies, a great amount of deleterious muta-
there are several mechanisms of DNA dynamics, like “con- tions have been observed in said genes which come from
certed” evolution, that co-determine the final properties of the random genetic drifRerimutter et al., 1985; Ota et al.,
genes. 2000. Additionally, the structural and functional evidences

This work shows a detailed study of variation patterns, imply a significant role of diversifying selection preserving
highlighting the fact that the diversification process does not the germline V gene segment repertoiRothenfluh et al.,
occur homogeneously among the genes, nor among differentl995; Ota et al., 20Q0Therefore, our results and the forego-
regions of V genesiirkham and Schroeder, 1994; Blanden ing entail complex and contradictory forces in the evolution
etal., 1998; Ota et al., 20Dd-rom the analysis of allelism per ~ of human V gene segments.
gene performed here, we notice a clear tendency to conserve From the analyses of substitution patterns (hnumber and
certain genes and diversify others. Nevertheless, evolutiontype of substitutions and R/S ratio) per region and position
does notoccurthrough the direct selection ofindividual genes of the different alleles, a second evolutionary strategy can
having unique characteristics associated with susceptibility be distinguished; more explicitly, not only a selective force
or resistance to diseases, but rather at the level of the com-and “concerted” evolution acting to conserve and/or diversify
plete Abs repertoireBlanden et al., 19981t is also neces-  some ofthe genes, butalso atendency to diversify only certain
sary to consider that, in the evolution of Igs, not only selective regions (mainly CDR2) within the gene may be observed.
pressure molds the repertoire; diverse mechanisms associateBurthermore, within those regions only some positions were
with DNA dynamics are also capable of selectively altering frequently replaced (positions 33, 50, 53, 54 and 58), being
certain genes or their sub-regions. This implies the existencepositions in frequent contact, these have been seen to play a
of evolutionary dynamics of optimization operating between central role in the interaction with the antigevgcCallum
different forces, and this will be expressed at different levels et al., 199§. This pattern is very similar to the one observed
of organization in locus IGHV. Therefore, it is necessary to when the differences among the IGHV genes in humans are
be careful when assuming that the same selective pressureanalyzed Tomlinson et al., 1996and with some patterns
will be acting for all the members of a family, be it small or in the sequence data that are consistent with “signatures” of
large. For example, in the early studies of the evolution of somatic eventsipmlinson et al., 1996; Blanden et al., 1998
Ig families it was postulated that, with the objective of in- It was also found that the FR3 region contains several po-
creasing the diversity of repertoires, the genetic strategy wassitions that are highly mutateé&ig. 2), and that the percent-
to generate large populations of redundant genes (complexage of non-conservative substitutions is as much as four-fold
families, e.g., family IGHV3), along with the persistent con- higher than in FR1 and FR2. Certain sub-segments of the FR
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